Recycling

Vaporizing Plastics -Turning Waste into Olefins

The University of California, Berkeley, developed a new catalytic chemical process that has the potential to revolutionize plastic recycling by converting waste polyethylene (PE) and polypropylene (PP) into valuable monomers.

The Need for Efficient Waste Plastics Recycling

Polyethylene and polypropylene are the dominant plastics in the global waste stream. Despite their wide usage, from single-use plastic bags to durable microwavable containers, current recycling methods for these materials are inefficient. They often produce large amounts of greenhouse gases or rely on expensive, single-use catalysts. The selective conversion of PE and PP into high-demand products is critical to reducing plastic waste and its environmental impact. However, most current methods suffer from low selectivity and high energy costs.

You can also read: Plastic Films: Solvent-Recycling Solutions

A Game-Changing Catalytic Process

The breakthrough process involves using a simple catalytic combination of tungsten oxide on silica and sodium on gamma-alumina. This combination efficiently transforms PE, PP, or a mixture of the two, including post-consumer forms, into propylene or a mixture of propylene and isobutylene. Remarkably, this reaction achieves a yield of over 90% at 320°C without needing to dehydrogenate the polyolefins first.

This method is not only energy-efficient but also eliminates the need for costly noble-metal homogeneous catalysts. This new approach represents a significant advancement in creating a sustainable and environmentally friendly recycling pathway for polyolefins.

Circular Economy Potential for Polyolefins

Scaling up this process could establish a circular economy for disposable plastics by converting waste into monomers for new plastics. This transformation would reduce dependence on fossil fuels while significantly lowering the environmental impact of plastic waste. While PET bottle recycling has been effective for years, most plastic waste consists of polyolefins like PE and PP, which have been much harder to recycle efficiently. By addressing this, the new process offers a breakthrough solution for polyolefin waste management.

The Road Ahead

John Hartwig, a chemistry professor at UC Berkeley, believes this process brings polyolefins significantly closer to true circularity. Together with graduate student RJ Conk and chemical engineer Alexis Bell, they aim to scale the technology for industrial use. By scaling up, they hope to create an efficient recycling loop for everyday plastics like polyethylene and polypropylene. They believe this method can revolutionize polyolefin recycling, similar to how PET recycling has closed the loop for polyester plastics.

This breakthrough could transform plastic waste management on a large scale. The process marks a key step toward building a more sustainable, circular economy for plastics. As a result, it offers a promising solution to reduce plastic pollution and dependence on fossil fuels.

To read the article click here

By Juliana Montoya | September 14, 2024

Recent Posts

  • PFAS

PFAS Contamination Tests the Limits of UK Policy

PFAS contamination is now systemic across the UK. Engineers and regulators must decide between incremental…

20 hours ago
  • Design

The Gecko Effect: How Shape-Memory Polymers Redefine Smart Adhesion

Shape-memory polymers enable strong, reversible adhesion inspired by nature, advancing smart adhesives for robotics and…

2 days ago
  • Recycling

Upcycling PTFE Products with Sodium Metal

A new sodium-based method upcycles PTFE into fluorochemicals at room temperature, reducing PFAS risk and…

3 days ago
  • Industry

Polymer Sorbents for Critical Minerals

Engineered polymers extract rare-earth ions from contaminated leachates, reducing acid consumption, cycle time, and solvent…

4 days ago
  • Energy Generation

Plastic Waste to Hydrogen—and Lubricant Additives—for H₂ Engines

Turning mixed plastic waste into hydrogen fuel and carbon nanomaterials for H₂ engines and advanced…

5 days ago
  • Industry 4.0

Smart Factories in Plastics Processing

Smart factories use data analytics, automation, and modular design to enhance efficiency, adaptability, and sustainability…

1 week ago