Recycling

Vaporizing Plastics -Turning Waste into Olefins

The University of California, Berkeley, developed a new catalytic chemical process that has the potential to revolutionize plastic recycling by converting waste polyethylene (PE) and polypropylene (PP) into valuable monomers.

The Need for Efficient Waste Plastics Recycling

Polyethylene and polypropylene are the dominant plastics in the global waste stream. Despite their wide usage, from single-use plastic bags to durable microwavable containers, current recycling methods for these materials are inefficient. They often produce large amounts of greenhouse gases or rely on expensive, single-use catalysts. The selective conversion of PE and PP into high-demand products is critical to reducing plastic waste and its environmental impact. However, most current methods suffer from low selectivity and high energy costs.

You can also read: Plastic Films: Solvent-Recycling Solutions

A Game-Changing Catalytic Process

The breakthrough process involves using a simple catalytic combination of tungsten oxide on silica and sodium on gamma-alumina. This combination efficiently transforms PE, PP, or a mixture of the two, including post-consumer forms, into propylene or a mixture of propylene and isobutylene. Remarkably, this reaction achieves a yield of over 90% at 320°C without needing to dehydrogenate the polyolefins first.

This method is not only energy-efficient but also eliminates the need for costly noble-metal homogeneous catalysts. This new approach represents a significant advancement in creating a sustainable and environmentally friendly recycling pathway for polyolefins.

Circular Economy Potential for Polyolefins

Scaling up this process could establish a circular economy for disposable plastics by converting waste into monomers for new plastics. This transformation would reduce dependence on fossil fuels while significantly lowering the environmental impact of plastic waste. While PET bottle recycling has been effective for years, most plastic waste consists of polyolefins like PE and PP, which have been much harder to recycle efficiently. By addressing this, the new process offers a breakthrough solution for polyolefin waste management.

The Road Ahead

John Hartwig, a chemistry professor at UC Berkeley, believes this process brings polyolefins significantly closer to true circularity. Together with graduate student RJ Conk and chemical engineer Alexis Bell, they aim to scale the technology for industrial use. By scaling up, they hope to create an efficient recycling loop for everyday plastics like polyethylene and polypropylene. They believe this method can revolutionize polyolefin recycling, similar to how PET recycling has closed the loop for polyester plastics.

This breakthrough could transform plastic waste management on a large scale. The process marks a key step toward building a more sustainable, circular economy for plastics. As a result, it offers a promising solution to reduce plastic pollution and dependence on fossil fuels.

To read the article click here

By Juliana Montoya | September 14, 2024

Recent Posts

  • 3D Printing/Additive Manufacturing

Optimizing Thermoset Epoxies for Additive Manufacturing with Sparse Infill

Michigan State University researchers unveiled novel thermoset epoxies capable of bridging unsupported gaps in sparse…

5 hours ago
  • PFAS

Why Canada Excludes Fluoropolymers from PFAS Classification

Canada regulators excluded fluoropolymers from PFAS classification based on factors related to environmental behavior and…

2 days ago
  • Blow Molding

What Is Blow Molding? Main Types and Technologies Explained

PET Technologies offers insights into the fundamentals of blow molding and how this process continues…

3 days ago
  • Microplastics

Engineering Innovations for Microplastic Prevention and Control

With new regulations focused on tire wear, pellet containment, and filtration, microplastic control now requires…

4 days ago
  • Recycling

Scaling Up Rubber Recycling Through Mechanochemical Devulcanization

A new large-scale recycling method uses mechanochemical devulcanization to recover and reuse EPDM rubber, enabling…

5 days ago
  • Regulation

A Novel Analytical Approach to Detect NIAS in Polystyrene

A new one-step, room-temperature extraction method enables accurate, non-targeted quantification of Non-Intentionally Added Substances (NIAS)…

6 days ago