The wave of novel therapeutics in modern medicine is here. Drug delivery systems (DDS) like polymer-based hydrogels provide an innovative option for effective medical treatments, a growing need. Hydrogels are versatile, biocompatible, and responsive to specific stimuli such as pH and temperature.
You can also read: Water Decontamination with Yeast Hydrogel
The various types of polymer-based hydrogels available provide useful and adaptable alternatives to traditional drug delivery mechanisms, making them ideal candidates for targeted drug delivery.
Polymer-based hydrogels are three-dimensional networks of crosslinked hydrophilic polymers. When connected, these crosslinked polymer networks create a porous space, allowing the hydrogel to hold water and biological fluids. The material of the hydrogel is soft and the polymer networks are nonporous, creating a gel-like web that maintains its structural integrity when filled with fluid. Think living tissues. The hydrogel’s swelling behavior regulates drug release and delivery, countering limitations of traditional DDS such as short half-life.
Polymer-based hydrogels come in a variety of “flavors” with varying advantages and limitations that determine the application of the hydrogel technology. They are classified based on origin, crosslinking, pore size, stimuli response, and others.
Polymer-based hydrogels are a lively topic in academic settings, with explosions in research seen over the last years and decades. Research organizations such as Harvard University’s Wyss Institute help pave the way for research trends in polymer-based hydrogels. This surge in research leads to gel technologies of increasing functionality, such as site-specific delivery and advanced drug release strategies. As researchers continue to collaborate, technologies will continue to advance. With these advancements, sophisticated biomedical therapeutics tailored to a patient’s needs will result, affecting the lives of millions of individuals.
Polymer-based hydrogels are an effective and innovative pathway for targeted drug delivery. Products such as sericin nanoparticles are carriers that deliver drugs to malignant melanoma cancer cells to inhibit growth. Thermoresponsive hydrogel nanocomposites for the treatment of postsurgical brain tumors are promising, as well. Other applications for polymer-based hydrogels include biosensors, wound dressing, tissue regeneration, food packaging, and PFAS removal from water. With anticipated compound annual growth rates (CAGR) shown at 6.7% from 2020 to 2027, polymer-based hydrogels are revolutionizing industries and do not appear to be stopping anytime soon.
Automation, sustainability, and 3D printing shape the blow molding's future.
Plastics Engineering spoke with Roberto Nunez, Director of Market Development at Baerlocher USA, about the…
Conor Carlin, SPE President, discusses SPE's role in the Global Plastic Pollution Treaty, emphasizing its…
As advanced recycling evolves rapidly, new companies and facilities are constantly emerging, partnerships are being…
With the growing demand for sustainable and high-performance materials, basalt fibers have become a promising…
Using recycled plastics in 3D printing reduces waste and carbon footprint, offering sustainable solutions such…