By utilizing advanced optical sorting technology, the project significantly improved the sorting process and, as a result, enhanced the quality of recycled materials. Consequently, the project successfully met most of its performance goals, highlighting the effectiveness of the applied technology.
You can also read: Flexible Packaging Made from Recycled Ocean Plastics
The pilot project set five key performance goals, including capturing 90% of FPP in the feedstock. Moreover, reducing paper contamination in FPP bales was another critical target. The team achieved four goals, reaching a 74% FPP capture rate. However, they can improve this rate through additional equipment tuning and upgrades. Notably, reducing paper contamination to 11-14% was particularly significant, underscoring the project’s success in producing cleaner recycled materials.
By the later stages of the project, these efforts culminated in producing cleaner, higher-quality recycled materials, demonstrating a successful adaptation to the challenges of recycling FPP at scale. The project’s gradual improvements underscore the potential for further advancements, laying the groundwork for even more efficient FPP recycling.
Furthermore, the pilot emphasized the critical importance of developing end markets for recycled FPP materials. With sufficient demand, investments in sorting technology can indeed be fully justified. The project successfully identified promising end markets, especially in construction, where recycled FPP can be used for products like roof boards and pavers. These markets, therefore, have significant growth potential as industries increasingly seek sustainable alternatives to virgin materials.
Despite these successes, the pilot did reveal several challenges, particularly in processing mixed material bales. The report, therefore, underscores the urgent need for better washing infrastructure to remove contaminants and, in turn, improve the quality of recycled FPP. Additionally, the complexity of processing mixed material bales requires ongoing refinement of sorting technology and processes to achieve optimal results.
In order to address these challenges and scale the pilot’s success nationwide, the report makes several key recommendations. These include developing standardized bale specifications to ensure consistent quality and investing in post-MRF processing facilities. Moreover, collaborating with new MRFs and end markets will also help build a robust circular economy for FPP. Continuous collaboration between MRF operators, end market stakeholders, and industry leaders will be crucial for achieving these goals.
In conclusion, the MRFF pilot project marks a significant step forward in integrating flexible plastic packaging into the recycling stream. By focusing on improving material recovery, enhancing market demand, and addressing technical challenges, this project lays the essential groundwork for a more sustainable and efficient recycling system across the U.S.
Read the complete report here.
Tooling digitalization can be the solution for today’s manufacturing systems, where the tool failures can…
As sustainability becomes a global priority, biopolymers derived from bacteria are emerging as an eco-friendly…
Understanding how the process's nature may induce deviations from the part design is crucial to…
LOWPOLY repurposes spent coffee grounds (SCGs) into functional furniture through large-format 3D printing.
Fatigue failure prediction methods of elastomers help estimate product service life and play a critical…
Manufacturers increasingly use lightweight yet durable plastics to replace metals, with new applications emerging regularly.
View Comments
I am curious why this is just being shared now if the data is from 2020. Has there been further progress since the completion of these tests?
Hi Rick! Thank you for your question and for reading the article! The data being shared is from 2020, and while the association did release a publication in 2023, it used the same data from 2020. These studies typically take 3-4 years to complete, which means progress is often gradual. We hope to see more updated findings soon.