Recyclate

DSC Tools for PCR Blends

To increase the amount of recycled content in plastic products, quality assurance of recyclates must improve. Some manufacturers attempt to characterize the PCR in-house, and DSC tools will be crucial.

Numerous companies aim to integrate more recycled content into their production. However, the process presents significant challenges. The variability of materials from batch to batch, coupled with the unknown mechanical and thermal properties, presents significant hurdles.

You can also read: Additives to enhance post-consumer recycled (PCR)

More Testing for Recyclate

Consequently, more testing is required to include post-consumer resin (PCR) and optimize the process for different recyclate blends. Alec Redmann, Sector Manager for Polymers Composites and Thermosets at NETZSCH Analyzing & Testing, spoke to Plastics Engineering Magazine about the new tools the company is implementing to provide better application support within the polymer division.

“One significant challenge in the industry is identifying the composition of complex blends in recycled materials,” said Redmann. Recyclers often deal with blends of polypropylene and polyethylene. These materials are difficult to identify accurately. Tools like differential scanning calorimetry (DSC) help create unique fingerprints for individual materials. This aids in precise identification.

DSC New Tools

Differential Scanning Calorimetry (DSC) is a must-have tool for identifying polymers based on their thermal behavior. It is widely used in the industry. However, identifying recyclate, a blend of different polymers, becomes more challenging. To tackle this problem, NETZSCH has developed new tools for peak separation in DSC to handle complex blends. This involves mathematical modeling to separate overlapping peaks, allowing for the accurate identification and quantification of different polymers in a blend. Peak deconvolution in DSC is a crucial advancement, enhancing the tool’s capability to analyze complex materials.

This tool is different from modulated DSC and helps recyclers and manufacturers understand the composition of their materials quickly and accurately. Knowing the precise composition of recycled materials is vital for determining their suitability for various applications. For example, in injection molding, the composition affects the value and usability of recycled materials. Accurate identification can significantly impact the efficiency and quality of the manufacturing process.

TM-DSC result for HDPE (PE100 sample) showing the average DSC signal with a solid black line, the reversing signal of the total heat flow with dotted black line and the non-reversing signal of the total heat flow with dashed blue line. Courtesy of NETZSCH.

Personalized Databases

Furthermore, to enhance accuracy, customers can create their own databases based on their specific materials. This customization improves the efficiency of material identification processes. Consequently, it allows companies to rely less on external databases and more on tailored solutions that fit their needs.
NETZSCH is setting new standards by providing more focused application support, developing new tools, and expanding its reach. These innovations will help recyclers and manufacturers improve efficiency, accuracy, and overall process quality. Additionally, it can help manufacturers include more PCR in their products, promoting sustainability in the plastic industry.

By Juliana Montoya | July 12, 2024

Recent Posts

  • Injection Molding

The Importance of Mold Temperature Control in Injection Molding

The temperature that the polymer experiences upon entering the mold and during solidification directly affects…

11 hours ago
  • Packaging

Polyamide Nanocomposites: A Shift in Sustainable Packaging

As sustainability takes center stage in packaging innovation, integrating Nanosilicates into polyamide has emerged as…

1 day ago
  • Industry

PFAS at a Glance: Challenges and Industry Impacts

The Society of Plastics Engineers (SPE) recently hosted its annual event in Baltimore, bringing together…

2 days ago
  • Industry

Understanding Supramolecular Structures in Epoxy Oligomers

The editor's choice for November 2024 in SPE's Polymer Engineering & Science journal is Anatoly…

2 days ago
  • Aerospace

Deep-Space Radiation Defense Using HDPE

Designed to protect astronauts from the hazardous radiation encountered in deep space, the AstroRad Vest…

3 days ago
  • Aerospace

3D Printing in Space with Liquid Crystal Polymers

Thermotropic Liquid Crystal Polymers (LCPs) have emerged as a high-performance engineering polymer, comparable to PEEK…

5 days ago