These polymers exhibit elastic behavior due to thermo-reversible cross-links and phase separation. They can be melted and reshaped like traditional plastics, allowing for efficient recycling. The elastic properties of TPEs stem from the interplay between the crystalline and elastomeric phases. The crystalline phase provides strength and stability, while the elastomer phase offers flexibility and elasticity. The material flows when the crystalline phase melts or dissolves, enabling various processing methods.
You can also read: Kraiburg TPE’s new Thermoplastic Elastomers meet Strict Water-Contact Compliance Rules
The service temperature range of TPEs depends on the elastomer phase’s glass transition temperature (Tg) and the crystalline phase’s Tg or melting temperature (Tm). At low temperatures, TPEs become stiff and brittle. As the temperature rises, they turn elastic and rubber-like, maintaining a constant modulus until the crystalline phase softens or melts, transforming the material into a viscous fluid.
Manufacturers use several methods to synthesize TPEs. For instance, they produce block copolymers through anionic, cationic, and controlled living radical polymerization. They prepare thermoplastic vulcanizates (TPVs), another type of TPE, via dynamic vulcanization. This process involves mixing elastomers with thermoplastics, followed by cross-linking. Other methods include esterification, polycondensation, transesterification, catalytic copolymerization, and direct copolymerization.
Also, there are different types of TPEs:
Effective phase separation is essential for superior mechanical properties in TPEs. This phase separation occurs when the free energy of mixing is positive. Factors favoring phase separation include high molecular weight segments, significant structural differences, and low temperatures. The classification of TPEs includes seven main groups: styrenic block copolymers, crystalline multi-block copolymers, TPVs, miscellaneous block copolymers, semi-crystalline polymer/elastomer combinations, graft copolymers, and ionomers. Most TPEs are block or graft copolymers characterized by sequences of different chemical and physical structures.
TPEs offer numerous advantages over conventional rubber materials. They require simpler processing with fewer steps and shorter fabrication times, lowering production cost. Manufacturers typically supply TPEs fully formulated, eliminating the need for compounding. Additionally, TPEs are reusable, reducing waste and lowering energy consumption.
However, TPEs also have disadvantages. They melt at elevated temperatures, limiting their use in high-temperature applications. Manufacturers offer a limited availability of low hardness TPEs, and processing requires prior drying. Despite these challenges, TPEs remain a versatile and recyclable alternative to traditional rubber materials. Their unique properties make them ideal for various industrial applications, offering a sustainable solution for the future.
To read the complete book chapter Specialty Thermoplastics.
As sustainability takes center stage in packaging innovation, integrating Nanosilicates into polyamide has emerged as…
The Society of Plastics Engineers (SPE) recently hosted its annual event in Baltimore, bringing together…
The editor's choice for November 2024 in SPE's Polymer Engineering & Science journal is Anatoly…
Designed to protect astronauts from the hazardous radiation encountered in deep space, the AstroRad Vest…
Thermotropic Liquid Crystal Polymers (LCPs) have emerged as a high-performance engineering polymer, comparable to PEEK…
Researchers at the University of Manchester developed an innovative biocomposite specifically designed for extraterrestrial construction…