The EU is already the largest producer of food and drink worldwide. However, as the demand for food increases, the agri-food sector faces mounting pressure. To tackle this issue, the Bio-Based Digital Twins (BBTWINS) project aims to transform agro-industry losses and inefficiencies into optimized, resource-efficient value chains. This will create a more resilient and environmentally friendly food system.
The BBI-JU-funded project will develop a digital platform using ‘digital twins’ technology. Moreover, this technology provides a real-time digital replica of physical processes for safe testing and optimization. BBTWINS aims to integrate the entire agri-food value chain by focusing on meat and fruit production. This integration spans from crop to final product, enhancing efficiency and sustainability.
As BBTWINS focuses on the fruit (peaches) and meat (pork products) sectors, researchers are developing digital twins for each. These digital twins aim to enhance agricultural processes and increase efficiency in a single value chain.
The work carried out in each sector of the study is presented below:
BBTWINS maximizes the valorization of unsold peaches by extracting high-value compounds like pectin, glucosinolates, and proteins. Researchers use these compounds for functional foods and nutraceuticals. Additionally, the project models peach shelf life during storage and employs smart agriculture to monitor fruit growth and development.
BBTWINS optimizes the availability, quality, resource efficiency, and economic performance of PORTESA’s feedstock production. The project enhances batch traceability and internal logistics. It also valorizes waste streams and models physical and chemical processes to improve quality and efficiency.
The project will also repurpose agri-food waste to integrate agri-food and feedstock value chains. This approach aims to minimize losses and achieve more sustainable production. Furthermore, it will develop and optimize biorefinery processes to extract valuable resources for reuse throughout the agri-food value chains. For example, the figure below illustrates some examples:
To achieve the project’s objectives, BBTWINS integrates blockchain, artificial intelligence (including machine learning and deep learning), and big data. Additionally, it incorporates software analytics, computer simulations of agri-food processes, and the Internet of Things (IoT) into a unified platform.
In conclusion, the BBTWINS project leverages cutting-edge technologies to address the pressing challenges faced by the EU agri-food sector.By integrating blockchain, artificial intelligence, big data, and IoT within a unified platform, BBTWINS optimizes value chains for increased efficiency and sustainability. Specifically, focusing on the fruit and meat sectors, the project enhances agricultural processes through digital twins, transforming losses into valuable resources and reducing waste.
Machine learning (ML) is revolutionizing quality control in manufacturing, enabling faster, smarter, and more efficient…
Borg-Warner Corporation introduced Acrylonitrile Butadiene Styrene (ABS), an amorphous engineering thermoplastic, to the market in…
Plastics Engineering has selected the Top 5 Articles on Sustainability in 2024, showcasing the most…
As global demand for sustainable packaging intensifies, Okeanos emerges as a transformative leader with its…
Developing high-performance solid polymer electrolytes (SPEs) represents a major leap forward for energy storage technologies,…
Energy efficiency in mold design is rarely considered but cooling, the size of sprues and…