Sustainability

Energy Management Systems – Injection Molding 1

Injection molding machines have both ‘base’ and ‘process’ loads, and an idling machine incurs substantial energy and monetary costs.

Even when idle, injection molding machines consume energy. The base load for standard (older) machines can range from 52% to 97.5% of the full molding energy consumption. For idle periods exceeding 20 to 45 minutes, it may be more cost-effective to switch off and restart the machine. At the very least, unnecessary services and functions, such as the main hydraulic motor, should be turned off to save energy.

Action:

  • Check that all jobs are on the smallest machine possible – small jobs on large machines waste energy.
  • Plan and control the start-up sequence to limit the Maximum Demand.
  • Fit a warning device to sound or flash when the Maximum Demand approaches the allowable limit.
  • Measure start-up energy use, idling energy use and operating energy use to find the relative costs.
  • Define an ‘idling’ mode for all machines – heaters reduced, hydraulics off, compressed air off and chilled water off.
  • Stop supplying services (compressed air and cooling water) to idle machines.
  • Switch off barrel heaters and cooling fans between runs or lower temperatures to ‘set-back’ ≈ 110°C.
  • Design handling systems to operate ‘on-demand’ only.

Dr. Robin Kent is the author of ‘Energy Management in Plastics Processing’, published by Elsevier and Managing Director of Tangram Technology Ltd. (www.tangram.co.uk ), consulting engineers for energy and sustainability management in plastics processing. 

Also read:

You can also learn more about energy management at Robin’s webinar, Energy Management in Plastics Processing, that took place Thursday, April 18, 2024.

By Robin Kent | June 24, 2024

Recent Posts

  • Electrical & Electronics

Leasing, Not Landfilling: Rethinking Electronics to Cut E-Waste

E-waste leasing and product-as-a-service models cut electronic waste by improving design, take-back, lease returns, and…

10 hours ago
  • Sustainability

Managing Plastic and Food Waste Through Insect Farming

Insect farming using mealworms and black soldier fly larvae offers a two-step solution to manage…

1 day ago
  • Composites

Limiting Volatile Organic Compounds in PP Wood-Plastic Composites

A recent study investigated how additives can reduce odor emissions from wood-plastic composites (WPCs), increasing…

2 days ago
  • Sustainability

Zeolites: A Mineral’s Role in Upcycling Plastic Waste

Incorporating zeolites into plastic recycling could signal a significant advancement for sustainability.

3 days ago
  • Industry

PFAS-Free Liquid Cooling Hardware for AI Data Centers

Fluorine-free polymers are redefining liquid cooling hardware, delivering chemical stability and dielectric strength without relying…

6 days ago
  • Microplastics

When Microplastics Meet PFAS: A Toxic Partnership in the Environment

Study reveals how different microplastics, especially polyamides, strongly adsorb PFAS, shaping pollution risks and remediation…

1 week ago