Thermoplastics

Underwater Engineering Efforts for Lake Source Cooling System

The Lake Source Cooling (LSC) system at Cornell University relies on the icy depths of Cayuga Lake to provide sustainable cooling solutions. However, invasive mussels pose a threat to the system’s efficiency, prompting innovative engineering interventions.

Maintaining the LSC system involves intricate underwater operations, such as cleaning intake screens and removing debris from pipes. These tasks require precision and efficiency to ensure uninterrupted cooling performance.

Innovative Engineering Solutions

Cornell engineers, in collaboration with students and cutting-edge technology, have developed creative solutions to address maintenance challenges. Rapid prototyping and 3D printing have enabled the fabrication of customized components for underwater applications.

Case Study: Octagonal Screen Cleaning

Mark Tarazi ’24, an engineering student who manages Cornell’s Rapid Prototyping Lab, holds the 3D-printed piece he made on the fly to help engineers perform a scrubbing to remove invasive mussels from Cornell’s Lake Source Cooling system.

Cleaning the octagonal screen, located 250 feet below Cayuga Lake’s surface, presented logistical challenges. Mark Tarazi, a mechanical engineering student managing Cornell’s Rapid Prototyping Lab, designed a tab made of an opaque thermoplastic for the shackle to nestle into, ensuring precise alignment of the cleaning equipment.

The LSC system has significantly reduced electricity usage and costs for Cornell University. However, periodic maintenance, such as “pigging” operations to remove mussels from pipes, is essential to maintain optimal performance and efficiency.

Environmental Considerations and Cost Analysis

Despite the substantial costs associated with maintenance projects, the long-term benefits of preserving the LSC system’s efficiency justify the investment. Sustainable practices and technological innovations contribute to minimizing environmental impact while ensuring reliable cooling solutions.

Ongoing efforts to monitor system performance and mitigate fouling will inform future maintenance strategies. By leveraging engineering expertise and collaborative partnerships, Cornell remains committed to sustainable energy solutions and environmental stewardship.

By Plastics Engineering | May 7, 2024

Recent Posts

  • 3D Printing/Additive Manufacturing
  • Aerospace
  • Automotive & Transportation
  • Industry
  • Materials
  • Medical
  • Process
  • Thermoplastics

High-Performance 3D Printing with Photosensitive PEEK Ink

A groundbreaking photosensitive PEEK ink is revolutionizing additive manufacturing and the polymer industry.

19 hours ago
  • Industry

K 2025: Driving Innovation Amid Economic Uncertainty

Despite current economic challenges, K 2025 remains the center of the plastics world, showcasing innovations…

2 days ago
  • Injection Molding

Troubleshooting Diesel Effect in Injection Molding

The diesel effect can occur in molds with insufficient venting, leading to burned parts in…

3 days ago
  • Polyamide

Inside Materials – Kevlar

The ballistic material par excellence that combines strength, tenacity, and lightweight.

4 days ago
  • Additives & Colorants

Modifying the Slip of Plastic Films with Additives

Plastic film's slip and friction characteristics are essential for optimal performance in flexible packaging. Modifying…

7 days ago
  • Medical

The Rapid Growth of the Medical Elastomer Market

The global medical elastomer market reached $9.57 billion in 2024, and analysts expect it to…

1 week ago