Thermoplastics

Underwater Engineering Efforts for Lake Source Cooling System

The Lake Source Cooling (LSC) system at Cornell University relies on the icy depths of Cayuga Lake to provide sustainable cooling solutions. However, invasive mussels pose a threat to the system’s efficiency, prompting innovative engineering interventions.

Maintaining the LSC system involves intricate underwater operations, such as cleaning intake screens and removing debris from pipes. These tasks require precision and efficiency to ensure uninterrupted cooling performance.

Innovative Engineering Solutions

Cornell engineers, in collaboration with students and cutting-edge technology, have developed creative solutions to address maintenance challenges. Rapid prototyping and 3D printing have enabled the fabrication of customized components for underwater applications.

Case Study: Octagonal Screen Cleaning

Mark Tarazi ’24, an engineering student who manages Cornell’s Rapid Prototyping Lab, holds the 3D-printed piece he made on the fly to help engineers perform a scrubbing to remove invasive mussels from Cornell’s Lake Source Cooling system.

Cleaning the octagonal screen, located 250 feet below Cayuga Lake’s surface, presented logistical challenges. Mark Tarazi, a mechanical engineering student managing Cornell’s Rapid Prototyping Lab, designed a tab made of an opaque thermoplastic for the shackle to nestle into, ensuring precise alignment of the cleaning equipment.

The LSC system has significantly reduced electricity usage and costs for Cornell University. However, periodic maintenance, such as “pigging” operations to remove mussels from pipes, is essential to maintain optimal performance and efficiency.

Environmental Considerations and Cost Analysis

Despite the substantial costs associated with maintenance projects, the long-term benefits of preserving the LSC system’s efficiency justify the investment. Sustainable practices and technological innovations contribute to minimizing environmental impact while ensuring reliable cooling solutions.

Ongoing efforts to monitor system performance and mitigate fouling will inform future maintenance strategies. By leveraging engineering expertise and collaborative partnerships, Cornell remains committed to sustainable energy solutions and environmental stewardship.

By Plastics Engineering | May 7, 2024

Recent Posts

  • Medical

Hydrogel Microspheres for Skin Care Applications

Polish researchers have evaluated hydrogel microspheres made from chitosan and carrageenan as effective vitamin carriers…

7 hours ago
  • Industry

Mold Manufacturing: How to Choose the Best Alloy

Selecting the right alloy for mold manufacturing is essential for meeting industry demands for durability,…

2 days ago
  • Injection Molding

The Importance of Mold Temperature Control in Injection Molding

The temperature that the polymer experiences upon entering the mold and during solidification directly affects…

3 days ago
  • Packaging

Polyamide Nanocomposites: A Shift in Sustainable Packaging

As sustainability takes center stage in packaging innovation, integrating Nanosilicates into polyamide has emerged as…

4 days ago
  • Industry

PFAS at a Glance: Challenges and Industry Impacts

The Society of Plastics Engineers (SPE) recently hosted its annual event in Baltimore, bringing together…

5 days ago
  • Industry

Understanding Supramolecular Structures in Epoxy Oligomers

The editor's choice for November 2024 in SPE's Polymer Engineering & Science journal is Anatoly…

5 days ago