Industry

Cutting Costs and Kilowatts in Plastics Manufacturing

The plastics processing industry is going through a significant transformation, driven by rising energy costs and concerns regarding future supply reliability.

Energy management has rapidly emerged as a crucial business priority for companies within the sector, once considered a peripheral issue. With energy expenses ranking as the third-largest variable cost, and sometimes even exceeding direct labor costs, businesses must address energy inefficiencies effectively to ensure survival. The absence of guidance often leads organizations to measure the wrong metrics in ineffective ways, resulting in suboptimal resource allocation and missed opportunities for efficiency improvements.

You can also read: Energy Management Systems – Assessing Performance

Energy Consumption Patterns: A Step-by-Step Approach

A structured approach to energy management is crucial for addressing this challenge, with internal benchmarking serving as the foundational step to differentiate between base loads —the energy consumed when no production occurs— and variable or process loads related to manufacturing activities, enabling businesses to accurately quantify these components and identify areas for improvement.

External benchmarking expands this analysis by allowing companies to compare their energy performance against industry peers, facilitating the identification of best practices and setting improvement targets.

Additionally, drilling down to the machine level provides detailed insights into energy usage, empowering organizations to optimize performance at a micro-scale.

 

Understanding base and variable loads is essential; reducing base loads offers immediate cost savings; while optimizing process loads requires nuanced interventions to enhance operational efficiency without compromising output or quality. Assessing performance and generating production accountability is paramount in effective energy management.

Furthermore, predicting costs based on historical energy usage corrected for production volume enables accurate budgeting and resource allocation. By leveraging sales forecasts to anticipate production volumes, companies can proactively plan for energy expenditures, enhancing financial predictability and operational stability.

Ensure Accountability and Continuous Improvement

Companies benefit significantly from continuous data collection and analysis, which reveals patterns and trends over time, enabling them to track how process changes, management initiatives, or external factors impact energy consumption.

Energy Efficiency Vs Production Rate

A critical consideration in evaluating energy efficiency is the influence of production volume on specific energy consumption (SEC). An example of the study conducted by the Institute of Materials, Minerals and Mining, illustrates how variations in production volume can distort SEC metrics, as higher production volumes tend to lower kWh/kg values due to simple amortization.

Assessing energy efficiency based solely on SEC values can lead to misleading conclusions, especially when production volumes fluctuate. Relying on simplistic metrics like kWh/kg may overlook the relationship between production volume and base load, potentially hiding inefficiencies. For instance, a decrease in SEC might seem like an efficiency improvement, but it could simply be due to increased production volume, spreading the base load over a larger output.

To avoid such pitfalls, a holistic understanding of energy usage dynamics is essential. By integrating production volume, energy consumption, and base load considerations, companies can gain actionable insights into their energy performance, driving sustainable improvements and optimizing resource utilization.

Data-Driven Decisions for Enery Management

The journey towards effective energy management begins with internal measurements, providing insights into current energy usage and paving the way for performance assessment and prediction. However, to drive substantial improvements, companies must also engage in external benchmarking against industry standards.

Empowering individual factory or process area managers with performance targets based on real production volume and internal energy benchmarks derived from historical factory performance fosters accountability and drives efficiency gains.

By Mariana Holguin | April 30, 2024

View Comments

  • There is no life without Plastics. Plastics have become integral part of modern day life. Humanity has to learn to responsibly use Plastics , practicing - Reduce, Reuse, Recycle.

Recent Posts

  • Artificial Intelligence

AI for Small & Medium Businesses: Potentials and Feasibility

Artificial Intelligence (AI) offers significant opportunities for small and medium-sized enterprises (SMEs). However, many SMEs…

7 hours ago
  • Energy Generation

Bioinspired Hydrogels in Clean Energy and Hydrogen Generation

Bioinspired hydrogels show promise in developing artificial photosynthesis. This can provide solutions to complex challenges…

8 hours ago
  • Injection Molding

Injection Molding Meets Industry 6.0

Industry 6.0 represents the next evolution in manufacturing, driven by artificial intelligence (AI) and autonomous…

1 day ago
  • Industry

Tooling Digitalization: Knowledge Management

For tooling digitalization, we already spoke about the basics and application milestones here the final…

2 days ago
  • Aerospace

High-Performance Materials from Earth to Space

A new generation of high-performance materials from the University of Bristol recently launched to the…

3 days ago
  • Design

The Beauty of PEF: Combining Functionality with Art

Avantium and Studio Hoogvliet Jongerius showcase the versatility and beauty of PEF (Polyethylene Furanoate).

6 days ago