PhD student Lee-Lun Lai loads a tray into a 3D microprinter to demonstrate how polymer transistors can be made faster, cheaper and more sustainably. Courtesy of KTH
By hacking into a 3D printer, they’ve transformed it into a versatile tool akin to a laser printer. It’s capable of printing various polymers without the need for solvents, chemicals, or stringent clean room conditions.
3D printing and additive manufacturing have revolutionized how objects are created, from intricate structures to complex components, without the constraints of traditional production methods. However, its reliance on specific chemicals and controlled environments has limited its application in certain industries, particularly aerospace and medical devices.
Traditional methods of printing polymers for flexible electronic devices have been hindered by the requirements of clean rooms and specialized inks, making rapid prototyping costly and time-consuming. Recognizing this bottleneck, researchers sought a more accessible solution to advance bioelectronic technologies.
Erica Zeglio, faculty researcher with Digital Futures, left, shows a finished transistor. At right is KTH Professor Frank Niklaus.
By leveraging ultrafast laser pulses, researchers bypassed the need for pristine environments, enabling swift prototyping of microscale devices critical for medical implants and wearable electronics. This breakthrough eliminates the time-consuming lift-off processes and environmentally harmful solvents associated with conventional 3D printing methods.
The newfound approach not only accelerates prototyping but also paves the way for developing novel materials and enhancing existing ones. Moreover, it offers a sustainable alternative by eliminating the use of non-eco-friendly solvents and developer baths, making it a greener option for manufacturing.
“Current methods rely on expensive and unsustainable cleanroom practices,” Erica Zeglio, faculty researcher with Digital Futures says. “The method we proposed here doesn’t.”
With the potential to revolutionize soft electronic device manufacturing, this innovative 3D printing method promises broader accessibility and affordability in the production of advanced technologies. Finally, by bridging the gap between laboratory research and practical applications, it marks a significant step forward in the democratization of technology.
As concerns over environmental and health risks grow, the aviation industry is taking crucial steps.…
New findings reveal microplastics in brain tissue, raising concerns about links to cognitive decline. Microplastic…
The world is bracing to adapt as the new administration reveals its hand. Changes in…
ANTEC® 2025 brings together scientists, engineers, and industry leaders to shape the future of plastics…
The past year marked significant growth for Bcomp, a leader in flax-based bio-composites, with achievements…
The global composites market is experiencing steady and significant growth. Market analysts expect that it…