Process

Laser Printed Polymers: 3D Printing without Solvents

Researchers at the KTH Royal Institute of Technology and Stockholm University in Sweden have unlocked a game-changing potential in 3D printing technology.

By hacking into a 3D printer, they’ve transformed it into a versatile tool akin to a laser printer. It’s capable of printing various polymers without the need for solvents, chemicals, or stringent clean room conditions.

3D printing and additive manufacturing have revolutionized how objects are created, from intricate structures to complex components, without the constraints of traditional production methods. However, its reliance on specific chemicals and controlled environments has limited its application in certain industries, particularly aerospace and medical devices.

Simplifying Prototyping with Laser Polymer Printing

Traditional methods of printing polymers for flexible electronic devices have been hindered by the requirements of clean rooms and specialized inks, making rapid prototyping costly and time-consuming. Recognizing this bottleneck, researchers sought a more accessible solution to advance bioelectronic technologies.

Erica Zeglio, faculty researcher with Digital Futures, left, shows a finished transistor. At right is KTH Professor Frank Niklaus.

By leveraging ultrafast laser pulses, researchers bypassed the need for pristine environments, enabling swift prototyping of microscale devices critical for medical implants and wearable electronics. This breakthrough eliminates the time-consuming lift-off processes and environmentally harmful solvents associated with conventional 3D printing methods.

Applications and Advantages

The newfound approach not only accelerates prototyping but also paves the way for developing novel materials and enhancing existing ones. Moreover, it offers a sustainable alternative by eliminating the use of non-eco-friendly solvents and developer baths, making it a greener option for manufacturing.

“Current methods rely on expensive and unsustainable cleanroom practices,” Erica Zeglio, faculty researcher with Digital Futures says. “The method we proposed here doesn’t.”

With the potential to revolutionize soft electronic device manufacturing, this innovative 3D printing method promises broader accessibility and affordability in the production of advanced technologies. Finally, by bridging the gap between laboratory research and practical applications, it marks a significant step forward in the democratization of technology.

By Plastics Engineering | March 19, 2024

Recent Posts

  • Injection Molding

Injection Molding in Plant-Based Meat Production

As one of the most adaptable polymer processing techniques, injection molding could transform plant-based meat…

20 hours ago
  • Sustainability

Closing the Loop: PET Thermoforms and Bottles in Sinergy

Phase 2 of the "PET Thermoform Recycling Costs & Material Flow Project" examined the technical,…

2 days ago
  • Blow Molding

What’s Powering the Future of Blow Molding?

Automation, sustainability, and 3D printing shape the blow molding's future.

5 days ago
  • Additives & Colorants

Additives in Action: Enhancing Plastic Recycling

Plastics Engineering spoke with Roberto Nunez, Director of Market Development at Baerlocher USA, about the…

6 days ago
  • Sustainability

Shaping the Global Plastic Pollution Treaty: SPE’s Role in INC-5

Conor Carlin, SPE President, discusses SPE's role in the Global Plastic Pollution Treaty, emphasizing its…

7 days ago
  • Industry

Advanced Recycling: A Detailed Check

As advanced recycling evolves rapidly, new companies and facilities are constantly emerging, partnerships are being…

1 week ago