Industry

Flake Sorting: Elevating Plastic Recycling

Advanced flake sorting technologies are revolutionizing the recycling industry by enhancing the quality and efficiency of plastic recycling processes.

Advanced flake sorting technologies are transforming the recycling industry by improving the quality and efficiency of plastic recycling processes. Leading this innovation, companies like TOMRA offer solutions that significantly enhance the sorting of plastic flakes, a vital step in recycling PET materials. These technologies utilize near-infrared (NIR) sensors, X-ray technology, and advanced software algorithms. They precisely identify and separate plastic flakes by type, color, and chemical composition, ensuring the quality of recycled plastics for high-value applications, including food-grade packaging.

You can also read: The Technology Behind Food-Grade rPET

Sorting Optimization

INNOSORT™ FLAKE emerges as the premier system for effectively purifying flakes based on polymer type, color, and clarity, addressing high-volume needs. Its adaptable setup is perfect for various plastic sorting tasks, enabling the segregation of PET and PO flakes into superior PP and PE fractions. This system excels in transforming mixed, contaminated plastics into valuable, pure recyclate materials demanded in the market. Achieving compliance with food-grade standards for post-consumer recycling through its advanced sensor and camera technology that removes undesired materials. Also, its powerful combination of advanced sensors and cameras instantly detects unwanted colors, foreign polymers, and materials like wood, rubber, and silicon.

Improved recycling

The impact of flake sorting technologies extends beyond improved recycling rates and material quality. They also support the circular economy by maximizing the value of recycled materials and reducing reliance on virgin resources. Furthermore, by enabling the efficient recycling of plastics, these technologies contribute to environmental conservation efforts, reducing the carbon footprint associated with plastic production and waste. It serves as a bottle-to-bottle recycling solution.

As global demand for sustainable packaging solutions continues to rise, the role of advanced sorting technologies in meeting these needs becomes increasingly significant. Innovations like those developed by TOMRA not only meet the technical challenges of recycling but also align with broader environmental goals.

By Juliana Montoya | March 6, 2024

Recent Posts

  • Artificial Intelligence

Active Learning Speeds Discovery of Antimicrobial Polymers

Machine learning (ML) enables rapid design of antimicrobial peptide (AMP)-mimetic polymers to treat bacterial infections.

3 days ago
  • 3D Printing/Additive Manufacturing

3D Printing Finds Growth Niches in the Plastics Industry

Insights from K Show: 3D printing finds key niches in plastics, from conformal-cooling tooling to…

4 days ago
  • People

Can Art Shift Behavior on Plastic Waste? Insights From TRACE-P

Collaborating through “COM-ART”, researchers and artists are turning information into action to support the circular…

5 days ago
  • Industry

International Polyolefins Conference: Industry´s Competitive Edge

The International Polyolefins Conference is where market intelligence meets practical solutions. For leaders, attending is…

5 days ago
  • Medical

3D-Printed Biodegradable Meshes for Guided Bone Regeneration

3D-printed biodegradable meshes improve guided bone regeneration by combining custom fit, mechanical support, and enhanced…

6 days ago
  • Film

Hyper-nucleated PP for Clear Monomaterial Packaging

Hyper-nucleated polypropylene improves clarity, stiffness and recyclability in rigid packaging by controlling crystallization.

7 days ago