Industry

The Impact of Pigments on Plastic Dimensional Stability

Dimensional stability from injected parts can be affected by several factors like cycle conditions, polymer crystallinity, and the masterbatch’s colorant or additives.

Crystallinity as a Main Player

In general, a semi-crystalline polymer will always be likely to develop crystalline structures in if enough time and temperature are given. Crystallinity can change depending on polymer chain orientation and proximity between them. Additionally, highly ordered chains could lead to significant crystallization. Crystallinity can be a fundamental parameter for dimensional stability in semicrystalline polymers due to the volume change during cooling.

You can also read: Is Color Affecting Plastic Recycling?

Also, crystallization may result from:

  • Polymer structure (Atactic, syndiotactic, isotactic).
  • Machine program and cycle conditions.
  • The choice of polymer.
  • The design of the part.
  • Colorant or additive type and loading.

Additives Can Induce or Control Crystallinity

Depending on the nature of the pigment, it can either be a warp and shrinkage controller or a nucleator. The impact of the nucleator may depend on the surface chemistry and morphology.

Organic pigments are typically hydrophobic, so their surface chemistry may facilitate orientation between molecules, which ultimately facilitates crystallization and leads to a bigger shrinkage and warpage.

On the other hand, inorganic pigments, which are typically hydrophilic, tend to have less surface interaction between particles, reducing the likelihood of crystalline-based warping. Shorter chains with fewer entanglements also facilitate crystallization.

Pigment Study

The company BASF did some research on HDPE with different pigments to study their effect on dimensional stability. The test used a gated-centered mold cavity of 63.66 x 56.94 mm. and the shrinkage was measured in the different specimens. The result was that depending on the pigment color, the dimensional stability changed.

 

BASF study: inherent resin shrinkage. Courtesy of BASF.

How to Control the Growth of Crystals?

There are several approaches to control crystallization and deformation:

  • Additives with inert fillers.
  • Colorant with functional additives.
  • Rapid cooling rate may restrict the opportunity to untangle and orient to form crystals.

Also, some additives with a certain affinity for the polymer and the pigment may prevent the pigment from acting as a nucleant agent or minimize the polymer chains from coming in contact and forming crystals.

Finally, additives may act similarly to wetting agents, inhibiting crystallinization.

By Juliana Montoya | February 23, 2024

Recent Posts

  • Artificial Intelligence

Redefining Quality Control with Machine Learning

Machine learning (ML) is revolutionizing quality control in manufacturing, enabling faster, smarter, and more efficient…

2 days ago
  • 3D Printing/Additive Manufacturing

Inside Materials – ABS

Borg-Warner Corporation introduced Acrylonitrile Butadiene Styrene (ABS), an amorphous engineering thermoplastic, to the market in…

3 days ago
  • Trending

Top 5 Articles on Sustainability in 2024

Plastics Engineering has selected the Top 5 Articles on Sustainability in 2024, showcasing the most…

4 days ago
  • Additives & Colorants

Okeanos: Transforming Packaging with Stone-Based Technology

As global demand for sustainable packaging intensifies, Okeanos emerges as a transformative leader with its…

5 days ago
  • Industry

Composite Polymer Electrolytes: Transforming Energy Storage

Developing high-performance solid polymer electrolytes (SPEs) represents a major leap forward for energy storage technologies,…

6 days ago
  • Sustainability

Energy Management Systems – Injection Molding III

Energy efficiency in mold design is rarely considered but cooling, the size of sprues and…

6 days ago