Many floating oil and gas production facilities are offshore for more than 20 years without dry-docking and their hulls can encounter corrosion problems. Toray and MODEC have jointly developed two approaches for using CFRP to address these issues effectively. All images courtesy of MODEC Inc.
Operators of offshore oil and gas platforms need to keep their infrastructure in good working order or risk encountering expensive downtime. Carbon fiber-reinforced plastic (CFRP) has come to the rescue, with a new technique enabling easier repair of thickened parts due to corrosion.
Two Japanese firms –– Toray Industries Inc. and MODEC Inc. –– have collaborated on the newly developed CFRP patch technology. They designed it for use on what is known in the industry as Floating Production, Storage and Offloading (FPSO), and Floating Storage and Offloading (FSO) systems.
Founded in 1968, MODEC stands for Mitsui Ocean Development & Engineering. It is a general contractor specializing in engineering, construction, operation, and maintenance of offshore oil and gas vessels. The company announced in December that beginning this year it will use this new CFRP patch technique for pitting corrosion repairs.
Importantly, it allows FPSO and FSO maintenance to occur without interrupting oil and gas production.
This is just the latest collaboration between the two firms, which won American Bureau of Shipping (ABS) approval in late 2020 for a previous technique. Then the two companies jointly developed a vacuum-assisted resin transfer molding (VaRTM) process for CFRP repairs. ABS, which provides classification services for marine and offshore assets, approved applying CFRP to steel to restore its mechanical strength.
This cross-section illustrates the VaTRM process.
The two techniques differ in the following way, explains Takahiro Matsui, of Tokyo-based Toray’s advanced composites unit, known as the ACM Technology Department:
This approved repair technique uses vacuum-assisted resin transfer molding (VaTRM) to create the required patches.
While excellent for repairing large corrosion areas, the VaRTM process was less suitable for pitting corrosion repairs. “The new CFRP patch technique is a more straightforward and more effective solution in such cases,” according to Toray. “It only requires bonding prefabricated CFRP patch flat plates over pitting corrosion, thereby reducing the workforce by half and improving lead times.”
The new patch technique eliminates the need for vacuum pumps and other equipment and streamlines the process of transporting reinforcement materials and construction tools onboard, Toray added. “Moreover, this technique ensures minimal disruption in oil and gas production because it eliminates the need for hot work.”
Toray –– founded in 1926 as a maker of rayon yarn –– and MODEC said they will continue to develop repair technologies for FPSO and FSO vessels. Their aim is “to promptly address market needs while tackling environmental and other social issues to contribute to a sustainable economy.”
Researchers are using machine learning (ML) to unlock the potential of an alternative welding technique…
Additive manufacturing has significant advantages for lightweight gear systems, and researchers are pinpointing how to…
Design strategies that balance recyclability and repairability can extend electronics’ lifespan and support circular economy…
An emerging technology, cold sintering, promises breakthroughs in the production of polymer-ceramic composites.
Natural and mineral fillers enhance UV resistance in rotomolded polyethylene, reducing surface oxidation and improving…
These honeycomb flexible-spoke non-pneumatic tires (FS-NPT) bring more comfort to wheelchair users.