If plastic is precious, why would we want to destroy it? This question constantly arises when technologies for biodegradability come to the table. But there’s no denying the truth that recycling, in its current setup, is failing in many parts of the world. A report by Green Peace USA points out that the country’s plastic recycling rate was estimated at 5-6% in 2021, and in Europe, it barely reached 10%.
Polymateria, a British start-up born at Imperial College London, recognizes this problem and has developed, as they call it, a technology that can completely biotransform and subsequently biodegrade polyolefins in the natural environment. It functions at the plastic conversion or resin production stage, introduced in low concentrations (less than 2%) into the polyolefin masterbatch, and researchers tailor it to act for the lifetime of the product. It is also compatible with the regular recycling stream, as they have proven with different brands.
To activate the biodegradability process, the plastic must be exposed to light, water, moisture, and microbes.
After activation of the technology, chemical conversion causes a rapid loss of physical properties. The technology attacks the crystalline and amorphous region of the polymer structure, rapidly converting it into a wax-like material (low molecular weight) that is no longer plastic and is not harmful to the environment.
Plastic Biotransformation. Courtesy of Polymateria.
To qualify as such, these waxes must also meet different standards:
Polymateria’s criteria to consider a biotransformation from plastic to wax. Courtesy of Polymateria.
In a natural environment, the weathering phase typically lasts a few months, but in the laboratory, researchers emulate it through UV (film) or Xenon-arc (rigid) exposure for a few weeks.
Subsequently, the process of biotransformation takes place, leading to the formation of bioavailable waxes through chemical conversion. Researchers then conduct tests for biosafety in various environmental ecosystems. They examine the acute and chronic ecotoxicity of the waxes in both soil and water.
Acute and chronic ecotoxicity of the waxes in soil and water. Courtesy of Polymateria.
Finally, the bioavailable wax undergoes biological transformation through mineralization by naturally occurring bacteria and fungi in the environment, degrading PE and PP films and rigids within 1–2 years. Third-party labs confirm the complete biodegradation, with no residual microplastics.
Polimateria claims that this technology is able to biotransform polyolefins into a non-toxic wax that will biodegrade. It is important to distinguish these technologies for biodegradability from Oxodegradable additives. As the US and EU banned these for producing microplastics.
Dynamic covalent networks allow crosslinked polyethylene to flow, weld, and relax stress during processing.
A two-year program conducted by CEFLEX gathered information from 1,700 data points and over 600…
A new PVC chemical recycling process converts mixed PVC and polyolefin waste into chlorine-free gasoline-range…
SPE, in collaboration with the SPE Injection Molding Division and the SPE Product Design &…
How the UK is scaling EPS recycling through better data, new collection tools, and chemical…
Graphene nanoplatelets reinforce polypropylene, boosting strength, stiffness and conductivity in lightweight automotive components and ESD-safe…