Industry

3D-Printed Phantom Models for Medical Imaging

Stratasys and Siemens Healthineers partnered to develop a technology that translates information from scanned patient images (CT) into 3D-printed phantom models with specific material characteristics that emulate the radiopacity of human anatomy.

Medical imaging has used phantoms for computed tomography (CT) for a while since they serve as specialized tools for assessing and verifying the functionality of CT scanners. These phantoms are tailored to replicate specific attributes of the human body and facilitate the evaluation of crucial parameters such as radiation dose and image quality. This process supports calibration efforts and ensures the consistent performance of the scanner.

It is more than a 3D model, radiopaque accuracy is needed

In collaboration, Stratasys and Siemens Healthineers integrate Stratasys’ PolyJet™ technology, its proprietary RadioMatrix™ technology, and Siemens Healthineers’ advanced algorithm. This combination aims to translate scanned patient images into specific material characteristics, achieving the radiopacity of human anatomy.

3D-printed phantom head slice. Courtesy of Stratasys.

The solution will allow for tailored phantom manufacturing and the creation of ultra-realistic human anatomy characteristics. A complete radiographic accuracy of patient-specific pathology not previously possible.

This joint project will transform how the medical field utilizes phantoms. In certain cases, even enable device manufacturers and academic facilities to replace human cadavers with 3D-printed structures.

“The current limitations of imaging phantoms have been a longstanding challenge for the radiology community,” said Erez Ben Zvi, Vice President of Medical at Stratasys. “This partnership with Siemens Healthineers will enable us to jointly explore the vast possibilities of our radiopaque materials and 3D printing technologies to overcome these barriers.”

 

From smaller parts to a human torso

This project will create important research data, giving valuable insights to improve algorithms for computer tomography (CT) systems.  It will also contribute to the development of materials, and open up possibilities for exploring new applications.

The project begins by producing 3D-printed models for smaller parts such as the head and neck. As the research advances, progressively larger and more detailed body parts will take shape. The goal is to initially 3D print a heart model and eventually create a detailed entire human torso.

By Juliana Montoya | January 10, 2024

Recent Posts

  • Aerospace

Aviation Fire Safety: Transitioning to Fluorine-Free Foams

As concerns over environmental and health risks grow, the aviation industry is taking crucial steps.…

2 days ago
  • People

Detecting Microplastics in the Human Brain

New findings reveal microplastics in brain tissue, raising concerns about links to cognitive decline. Microplastic…

3 days ago
  • Trending

The Plastics Industry and Policy Changes Under Trump

The world is bracing to adapt as the new administration reveals its hand. Changes in…

3 days ago
  • Education & Training

Sustainability Takes the Spotlight at ANTEC®2025

ANTEC® 2025 brings together scientists, engineers, and industry leaders to shape the future of plastics…

4 days ago
  • Automotive & Transportation

Bcomp’s Breakthrough Year: Scaling Bio-Composites for a Sustainable Future

The past year marked significant growth for Bcomp, a leader in flax-based bio-composites, with achievements…

4 days ago
  • Composites

Market Composites Trends Forecasts to 2030

The global composites market is experiencing steady and significant growth. Market analysts expect that it…

5 days ago