Process

Rheology in Optimizing Thermoplastic Polymer Performance

Polymeric materials are the backbone of various industries, ranging from packaging and electronics to automotive and aerospace. The melt flow behavior of thermoplastic polymers, crucial for processes like extrusion, injection molding, and more, is significantly influenced by their molecular architecture.

Plastics engineers aiming to tailor polymeric materials to specific physical properties and ensure top-notch manufacturing processes need to master the art of rheology.

In an upcoming webinar, industry experts will explore the applications of diverse rheological techniques for evaluating viscosity and viscoelasticity properties in thermoplastic polymers. The spotlight will be on the advantages of leveraging a rotational rheometer to characterize the melt flow behavior of molten polymers. The session will go beyond theory, offering practical examples that correlate rheological testing data with molecular structures, including molecular weight (MW), molecular weight distribution (MWD), and long chain branching.

Understanding how these molecular factors impact melt processing performance is crucial for plastics engineers looking to enhance product quality. One must also understand the role of rheology at every stage of polymer processing, from characterizing resins to determining structural properties and final product attributes.

Look for practical insights into how rheological testing aids in optimizing process conditions and end-use products. By aligning rheological properties with the molecular structure, plastics engineers can make informed decisions, saving costs and minimizing potential waste. The correlation between rheology and processing performance provides a valuable framework for developing polymeric materials tailored to specific applications.

It’s evident that rheology is poised to play a pivotal role in shaping the future of polymer processing. As the industry continues to evolve, a deeper understanding of rheological properties will be instrumental in achieving optimal performance and efficiency.

Tianhong Chen, Ph.D.

The webinar will be presented by Dr. Tianhong (Terri) Chen, a leading expert in rheology and polymer science. Dr. Chen serves as the Principal Applications Scientist and Rheology Technical Lead at TA Instruments. With a PhD in polymer synthesis and material engineering, Dr. Chen has made significant contributions through publications, patents, and webinars, showcasing her expertise in adhesive and thermosetting polymers, as well as polymer sustainability.

Join SPE in March to unravel the potential of rheology in unlocking the future of polymer processing.

By Plastics Engineering | December 21, 2023

Recent Posts

  • PFAS

What’s All The Fuss About PFAS?

Dr. Prithu Mukhopadhyay, the SPE Journal of Vinyl & Additive Technology editor, discusses key aspects…

1 hour ago
  • Composites

Advanced Sandwich-Structured Composites

Researchers developed the Thermal Expansion Molding Process (TEMP), which aims to reduce high costs and…

2 hours ago
  • Injection Molding

Injection Molding in Plant-Based Meat Production

As one of the most adaptable polymer processing techniques, injection molding could transform plant-based meat…

1 day ago
  • Sustainability

Closing the Loop: PET Thermoforms and Bottles in Sinergy

Phase 2 of the "PET Thermoform Recycling Costs & Material Flow Project" examined the technical,…

2 days ago
  • Blow Molding

What’s Powering the Future of Blow Molding?

Automation, sustainability, and 3D printing shape the blow molding's future.

5 days ago
  • Additives & Colorants

Additives in Action: Enhancing Plastic Recycling

Plastics Engineering spoke with Roberto Nunez, Director of Market Development at Baerlocher USA, about the…

6 days ago