Education & Training

Polymer Technology Revolutionizing Diabetes Care

In a groundbreaking collaboration, researchers from Cornell and the University of Alberta, Edmonton, have pioneered a novel technique for treating Type 1 diabetes. Their innovation involves implanting a revolutionary device, a removable polymer thread, beneath the skin. This device can seamlessly secrete insulin, offering a game-changing alternative to traditional insulin injections and transplants, eliminating the need for immunosuppression.

Published in Nature Biomedical Engineering on December 5, the research paper titled “Inflammation-Induced Neovascularization of the Subcutaneous Tissue for the Long-Term Survival of Encapsulated Islets Without Immunosuppression” outlines a transformative approach co-developed by lead researchers Long-Hai Wang and Braulio A. Marfil-Garza.

Type 1 diabetes, characterized by the immune system’s attack on insulin-producing pancreatic cell clusters, leaves the body unable to regulate glucose entry into cells. Current treatments involve daily insulin injections or insulin pumps. However, Minglin Ma, a professor of biological and environmental engineering at Cornell, aimed to revolutionize diabetes control, particularly for children diagnosed with Type 1.

Minglin Ma, professor of biological and environmental engineering in the College of Agriculture and Life Sciences (CALS)

In 2017, Ma unveiled TRAFFIC (Thread-Reinforced Alginate Fiber For Islets enCapsulation), a removable polymer thread containing thousands of islet cells. This thread, implanted in the abdomen, acted as a micro-porous cage, allowing islets to secrete insulin in response to rising blood sugar levels. A more robust version created in 2021 demonstrated effectiveness in controlling blood sugar levels for up to six months in diabetic mice.

Collaborating with James Shapiro, a leader in islet transplantation from the University of Alberta, Ma merged their innovative strategies, resulting in SHEATH (Subcutaneous Host-Enabled Alginate THread). This two-step installation process involves inserting nylon catheters under the skin for four to six weeks, allowing blood vessels to form. Subsequently, islet devices are placed into the pocket created by the catheters, ensuring an intact vascular system.

The advantage of this technique lies in its minimal invasiveness, offering an outpatient procedure under local anesthesia. The researchers, including co-authors Ashim Datta and Dr. James Flanders, foresee challenges for long-term clinical application but express optimism in overcoming them. Persista Bio, a Cornell spinoff formed by Ma and collaborator Linda Tempelman, aims to address these challenges and develop a separate device to supply additional oxygen to the cells.

Supported by institutions like the National Institutes of Health, Novo Nordisk Company, Juvenile Diabetes Research Foundation, Hartwell Foundation, and the Diabetes Research Institute Foundation of Canada, this revolutionary polymer-based approach holds promise for transforming diabetes management on a global scale.

By Plastics Engineering | December 11, 2023

View Comments

  • Do they respond to fructose? What splits the sucrose?
    Is response fast/big enough to manage a scoop of ice cream, or a candy bar?

Recent Posts

  • Packaging

Bold Minimalism in Packaging: Clarity That Wins Attention

Bold minimalism uses negative space, typography, and color blocks to improve shelf impact and thumbnail…

3 hours ago
  • Industry

Upcycling of Polyolefins Through C–H Bond Activation

Polyolefins define modern plastics, but their chemical stability now drives a new search for smarter…

1 day ago
  • Thermoplastics

Advancing Fire Performance with Flame-Retardant Fiber Reinforced Thermoplastic Composites

Fire performance of materials used in building and construction applications plays a critical role in…

2 days ago
  • Design

Beauty Packaging Design for Social Commerce and Gen Z

Social commerce shifts beauty packaging into feeds. Engineers must control gloss, haze, defects, and durability…

2 days ago
  • Microplastics

Bio-Based Media for Micro- and Nanoplastics Removal

Green coagulation and nanocellulose foams improve microplastic removal, yet integration challenges include clogging and media…

3 days ago
  • Recycling

Printable Chipless RFID Helps Sort Plastics—and Washes Off Later

Printable chipless RFID tags using MXene inks enable remote sorting and then dissolve in a…

4 days ago