Industry

PFAS-Free Flame Retardants

Today’s flame-retardant technologies rely strongly on PFAS, but regulations around the globe are pushing the industry to find alternatives that aim to balance fire safety with environmental and health considerations.

Today’s flame retardants

Some highly used flame retardants (FR) are considered PFAS according to the European Chemicals Agency classification, which are: PTFE and K Perfluorobutane sulfonate (KPFBS), commonly known as Rimar Salt.

  • PTFE acts as an anti-drip, but in some formulations alone can provide sufficient flame retardancy. However, researchers and experts consider the potential for the formation of non-polymeric PFAS chemicals during incineration.
  • Brand owners and green NGOs generally consider Rimar Salt or KPFBS a PFAS chemical, placing it directly in their focus.

Some alternatives for these FR are brominated or phosphorous technologies. For example: TBBPA (Tetrabromobisphenol A) (currently banned in the EU) or BPADP, commonly known as Bisphenol A. Nevertheless, there are increasing restrictions on these solutions in Europe and North America.

The industry must shift to FR solutions that do not include PFAS, brominated, or phosphorous and non-halogen technologies.

Which are the alternatives?

According to FRX Innovations, a company that promotes eco-friendly flame retardants for the industry, finding a replacement for Flame Retardants that highly rely on PFAS is a matter of synergies between different additives available on the market, that together may have excellent results and with low content of Phosphorous (less than 2%).

Some solutions for Polycarbonate (PC), for example, can include Lexan 141R, PBT Ultradur (BASF), Nofia HM 7000, and Lotader AX8900 (SK) in different proportions. This blend meets the UL-95 at 1.6mm and 0.8mm.

For opaque Polycarbonate, FRX Innovations also propose a synergy between additives that include Lexan 141R, Nofia HM1100, Phosphazene (Otsuka),Lotader AX8900 (SK), and Joncryl ADR 4400 (BASF).

In conclusion, future legislation may affect not only PTFE, KPFBS, because of PFAS. But also brominated and Phosphorous-based flame retardants.

Producers must seek an alternative to the flame retardants used today. It will not be easy to meet the standards but the plastic industry will arise as many times before.

By Juliana Montoya | December 15, 2023

Recent Posts

  • PFAS

PFAS in Cosmetics: The Hidden Risk

Study reveals hidden PFAS in long-wear cosmetics, exposing health and environmental risks and calling for…

13 hours ago
  • Vinyl

From Raincoats to Flooring: PVC’s Dual Life in Fashion and Construction

PVC extends from flexible, RF-weldable coated fabrics to rigid, load-bearing profiles in buildings and flooring…

1 day ago
  • Vinyl

Enzyme-Activated PVC: Redefining Vinyl’s End-of-Life Pathway

Hyphyn introduces enzyme-driven PVC biodegradation, achieving over 90% breakdown under ASTM D5511; however, real-world landfill…

3 days ago
  • PFAS

PFAS Contamination Tests the Limits of UK Policy

PFAS contamination is now systemic across the UK. Engineers and regulators must decide between incremental…

5 days ago
  • Design

The Gecko Effect: How Shape-Memory Polymers Redefine Smart Adhesion

Shape-memory polymers enable strong, reversible adhesion inspired by nature, advancing smart adhesives for robotics and…

6 days ago
  • Recycling

Upcycling PTFE Products with Sodium Metal

A new sodium-based method upcycles PTFE into fluorochemicals at room temperature, reducing PFAS risk and…

7 days ago