Some highly used flame retardants (FR) are considered PFAS according to the European Chemicals Agency classification, which are: PTFE and K Perfluorobutane sulfonate (KPFBS), commonly known as Rimar Salt.
Some alternatives for these FR are brominated or phosphorous technologies. For example: TBBPA (Tetrabromobisphenol A) (currently banned in the EU) or BPADP, commonly known as Bisphenol A. Nevertheless, there are increasing restrictions on these solutions in Europe and North America.
The industry must shift to FR solutions that do not include PFAS, brominated, or phosphorous and non-halogen technologies.
Some solutions for Polycarbonate (PC), for example, can include Lexan 141R, PBT Ultradur (BASF), Nofia HM 7000, and Lotader AX8900 (SK) in different proportions. This blend meets the UL-95 at 1.6mm and 0.8mm.
For opaque Polycarbonate, FRX Innovations also propose a synergy between additives that include Lexan 141R, Nofia HM1100, Phosphazene (Otsuka),Lotader AX8900 (SK), and Joncryl ADR 4400 (BASF).
In conclusion, future legislation may affect not only PTFE, KPFBS, because of PFAS. But also brominated and Phosphorous-based flame retardants.
Producers must seek an alternative to the flame retardants used today. It will not be easy to meet the standards but the plastic industry will arise as many times before.
The plastics industry is undergoing a profound transformation. With increasing pressure to decarbonize, reduce waste,…
Researchers are using machine learning (ML) to unlock the potential of an alternative welding technique…
Additive manufacturing has significant advantages for lightweight gear systems, and researchers are pinpointing how to…
Design strategies that balance recyclability and repairability can extend electronics’ lifespan and support circular economy…
An emerging technology, cold sintering, promises breakthroughs in the production of polymer-ceramic composites.
Natural and mineral fillers enhance UV resistance in rotomolded polyethylene, reducing surface oxidation and improving…