Industry

Fluoropolymers Life Cycle and PFAS Contamination

The plastics industry mainly uses PFAS as polymerization aids and this would be the main cause of PFAS emissions related to the life cycle of fluoropolymers.

The molecules that have raised government concern are the non-polymeric PFASs, such as PFOA and PFOS. They are usually water-soluble, bioavailable, bioaccumulative, mobile, and toxic small molecules, which classify them as substances of high concern for their life cycle.

On the other hand, fluoropolymers (considered PFAS by the European Chemicals Agency classification) are very large, water-insoluble, non-bioavailable, non-bio accumulative, non-mobile, and non-toxic molecules.

Why do we treat fluoropolymers as PFOA?

The main reason for banning fluoropolymers, along with non-polymeric PFASs, such as PFOA, lies in their life cycle. In order to manufacture fluoropolymers, it is necessary to intentionally add non-polymeric PFASs, which are substances of great concern.

When using PFASs as monomers or modifiers, we recover and recycle the unreacted part in a continuous closed cycle.

In the case of polymerization aids, unspent PFASs can leach out, contaminating surfaces they touch. Therefore, fluorinated polymerization aids are the main cause of PFAS emissions related to fluoropolymer production.

End-of-life phase

The end-of-life of most fluoropolymers does not differ much from conventional plastic.

Typically, these types of polymers are used in tiny parts in very complex and specific applications, making them difficult to recover and recycle. They are more likely to end up in landfill or incinerated.

High precision aluminium rubber and plastic automotive parts.

If in landfills (undesirable), their waste remains inert, posing no threat to people and the environment.

However, the majority of fluoropolymer waste in the European Union (83%) ends up in thermal destruction. This process raises concern because it must reach a suitable temperature to complete mineralization.

Failure to achieve this converts large fluoropolymers into small, water-soluble, bioavailable, bioaccumulative, mobile, and toxic molecules.

In conclusion, the fluoropolymer life cycle contributes to PFAS contamination.

It may seem like over-regulation for some plastics producers, but in the end, it is difficult to ensure that fluoropolymers do not contribute to this problem, since they use high-concerned chemicals (PFAS) in their processes.

By Juliana Montoya | December 4, 2023

Recent Posts

  • Industry

PFAS-Free Liquid Cooling Hardware for AI Data Centers

Fluorine-free polymers are redefining liquid cooling hardware, delivering chemical stability and dielectric strength without relying…

21 hours ago
  • Microplastics

When Microplastics Meet PFAS: A Toxic Partnership in the Environment

Study reveals how different microplastics, especially polyamides, strongly adsorb PFAS, shaping pollution risks and remediation…

3 days ago
  • PFAS

PFAS in Cosmetics: The Hidden Risk

Study reveals hidden PFAS in long-wear cosmetics, exposing health and environmental risks and calling for…

4 days ago
  • Vinyl

From Raincoats to Flooring: PVC’s Dual Life in Fashion and Construction

PVC extends from flexible, RF-weldable coated fabrics to rigid, load-bearing profiles in buildings and flooring…

5 days ago
  • Vinyl

Enzyme-Activated PVC: Redefining Vinyl’s End-of-Life Pathway

Hyphyn introduces enzyme-driven PVC biodegradation, achieving over 90% breakdown under ASTM D5511; however, real-world landfill…

7 days ago
  • PFAS

PFAS Contamination Tests the Limits of UK Policy

PFAS contamination is now systemic across the UK. Engineers and regulators must decide between incremental…

1 week ago