Industry

How does the PFAS ban affect the plastics industry?

Many applications rely on PFASs and fluoropolymers, but not in all cases can they be substituted as quickly as the legislation requires.

PFASs are on their way to being prohibited in the European Union, and the U.S. will continue that policy. According to the European Chemicals Agency classification, most fluoropolymers fall into perfluoroalkylated and polyfluoroalkylated substances (PFAS), which justifies their ban. But what about applications that rely on them?

Switch to PFAS-free alternatives

Companies now have two options, try to switch to PFAS-free solutions or ask for an exemption, which could be temporary.

Since using PFAS as polymerization aids is the main cause of PFAS emissions related to the fluoropolymer life cycle, several additive companies have developed PFAS-free auxiliaries to comply with the looming ban.

Companies such as Avient, AMPACET, MOMENTIVE, BAERLOCHER, and GFL have developed different polymer processing aids with different chemistries. Depending on the application, one will be more suitable than another. These solutions directly solve problems such as melt fracture, matrix formation, energy consumption, dimensional and thermal stability, and flame retardancy.

Finding a substitute as quickly as the legislation requires

Other industries, such as biomedical, use fluoropolymers, especially PTFE, for a wide variety of products, from surgical instruments to guidewires and catheters. This is because PTFE has the lowest coefficient of friction of all polymers, and is self-lubricating and inert. Another concern is the rigorous regulation of medical devices, making material changes a lengthy and approval-intensive process.

The aerospace sector, also, may encounter challenges in substituting PFAS due to its need for standardized solutions, potentially extending the transition period.

But requesting an exception is, for many experts, an option to gain time to move to a PFAS-free solution. In the long term, this could create a crisis in the material supply chain, as some PFAS producers may choose to withdraw from the market in 2025.

By Juliana Montoya | November 28, 2023

Recent Posts

  • Materials

PVC Waste to Fuel: Room-Temperature Chemical Recycling Breakthrough

A new PVC chemical recycling process converts mixed PVC and polyolefin waste into chlorine-free gasoline-range…

19 hours ago
  • Injection Molding

SPE Launches IMPACT Awards to Celebrate Excellence in Injection-Molded Part Design and Performance

SPE, in collaboration with the SPE Injection Molding Division and the SPE Product Design &…

2 days ago
  • Sustainability

What Comes Next for EPS Recycling in the UK

How the UK is scaling EPS recycling through better data, new collection tools, and chemical…

2 days ago
  • Automotive & Transportation

Graphene Nanofillers in PP for Automotive Applications

Graphene nanoplatelets reinforce polypropylene, boosting strength, stiffness and conductivity in lightweight automotive components and ESD-safe…

3 days ago
  • Bioplastics

How Flexible Polyesters Transform PLLA

Flexible bio-based polyester blocks transform brittle PLLA into ultra-tough copolymers with high extensibility and industrially…

4 days ago
  • Design

How Private Labels Embody Store Identity

How private-label packaging systems balance brand coherence, differentiation, and material constraints across diverse retail categories.

5 days ago