Industry

3D Flow Model Predicts Fiber Orientation for Large-area Additive Manufacturing

Editor’s choice from SPE Journal Polymer Composites for October 2023 addresses a three-dimensional polymer composite flow simulation and associated fiber orientation prediction for Large-area extrusion deposition Additive Manufacturing (LAAM).

2D flow models have been handy for gaining knowledge about the material anisotropy of the deposited composite parts. Still, assumptions cause the loss of significant characters in the deposition flow.

Zhaogui Wang, Chenjun Luo, Zhongqi Xie, and Zhenyu Fang employ a 3D flow model that focuses on the quasi-steady state of the polymer composite melt flow within the nozzle and the subsequent 90-degree turning deposition onto the material substrate.

 

The extrudate swell of the free surface, furthermore, is predicted using the improved elastic re-meshing method provided in ANSYS-Polyflow. It is an efficient and computationally powerful re-meshing algorithm for free surface predictions of 3D extrusion flows.

Comparison of fiber orientation results computed by 3D flow versus 2D flow

The 3D flow model presents advantages over the 2D-planar flow model:

  • The extrudate swell of the deposited bead is the first feature showing the difference between the simplified 2D planar and 3D flow models.
  • The 3D flow model presents the important shear rate variations within the nozzle flow.
  • The 3D flow model predicted the fiber alignment pattern more accurately, compared to the 2D simplified model. Thus, it helps improve the material properties estimations of the produced composites.
  • The result of the 3D model simulation corresponds to experimental data more than the 2D model simulation.

Effects on processing conditions

Additionally, a parametric study was performed with the constructed 3D flow and fiber analysis formulation to understand the impact on process parameters.

Among these, the ratio of extrusion-to-deposition ratio exhibits the most significant impact. As an increased deposition rate increases, the fiber alignment along the direction of the deposition.

Contribution

Therefore, the simulation-based methodology provides an effective means for both designers and manufacturers to simulate the mechanical properties of the entire product manufactured with LAAM without the burden of time-consuming experiments.

Read the full article from our SPE Journal Polymer Composites.

By Juliana Montoya | October 30, 2023

Recent Posts

  • Industry

PFAS-Free Liquid Cooling Hardware for AI Data Centers

Fluorine-free polymers are redefining liquid cooling hardware, delivering chemical stability and dielectric strength without relying…

2 days ago
  • Microplastics

When Microplastics Meet PFAS: A Toxic Partnership in the Environment

Study reveals how different microplastics, especially polyamides, strongly adsorb PFAS, shaping pollution risks and remediation…

4 days ago
  • PFAS

PFAS in Cosmetics: The Hidden Risk

Study reveals hidden PFAS in long-wear cosmetics, exposing health and environmental risks and calling for…

5 days ago
  • Vinyl

From Raincoats to Flooring: PVC’s Dual Life in Fashion and Construction

PVC extends from flexible, RF-weldable coated fabrics to rigid, load-bearing profiles in buildings and flooring…

6 days ago
  • Vinyl

Enzyme-Activated PVC: Redefining Vinyl’s End-of-Life Pathway

Hyphyn introduces enzyme-driven PVC biodegradation, achieving over 90% breakdown under ASTM D5511; however, real-world landfill…

1 week ago
  • PFAS

PFAS Contamination Tests the Limits of UK Policy

PFAS contamination is now systemic across the UK. Engineers and regulators must decide between incremental…

1 week ago