Industry

3D Flow Model Predicts Fiber Orientation for Large-area Additive Manufacturing

Editor’s choice from SPE Journal Polymer Composites for October 2023 addresses a three-dimensional polymer composite flow simulation and associated fiber orientation prediction for Large-area extrusion deposition Additive Manufacturing (LAAM).

2D flow models have been handy for gaining knowledge about the material anisotropy of the deposited composite parts. Still, assumptions cause the loss of significant characters in the deposition flow.

Zhaogui Wang, Chenjun Luo, Zhongqi Xie, and Zhenyu Fang employ a 3D flow model that focuses on the quasi-steady state of the polymer composite melt flow within the nozzle and the subsequent 90-degree turning deposition onto the material substrate.

 

The extrudate swell of the free surface, furthermore, is predicted using the improved elastic re-meshing method provided in ANSYS-Polyflow. It is an efficient and computationally powerful re-meshing algorithm for free surface predictions of 3D extrusion flows.

Comparison of fiber orientation results computed by 3D flow versus 2D flow

The 3D flow model presents advantages over the 2D-planar flow model:

  • The extrudate swell of the deposited bead is the first feature showing the difference between the simplified 2D planar and 3D flow models.
  • The 3D flow model presents the important shear rate variations within the nozzle flow.
  • The 3D flow model predicted the fiber alignment pattern more accurately, compared to the 2D simplified model. Thus, it helps improve the material properties estimations of the produced composites.
  • The result of the 3D model simulation corresponds to experimental data more than the 2D model simulation.

Effects on processing conditions

Additionally, a parametric study was performed with the constructed 3D flow and fiber analysis formulation to understand the impact on process parameters.

Among these, the ratio of extrusion-to-deposition ratio exhibits the most significant impact. As an increased deposition rate increases, the fiber alignment along the direction of the deposition.

Contribution

Therefore, the simulation-based methodology provides an effective means for both designers and manufacturers to simulate the mechanical properties of the entire product manufactured with LAAM without the burden of time-consuming experiments.

Read the full article from our SPE Journal Polymer Composites.

By Juliana Montoya | October 30, 2023

Recent Posts

  • Sustainability

Fraunhofer Turns Contaminated Packaging Waste into Textile-Grade Fibers

Fraunhofer validates solvent and glycolysis routes that convert contaminated packaging waste into textile-grade PP and…

2 days ago
  • Packaging

When Color Becomes Waste

A decision made at the pigment stage can decide whether a plastic product is recyclable…

3 days ago
  • Industry

PLA Meets Regulation at ANTEC 2026

Packaging laws are accelerating. Learn how policy reshapes PLA choices, end-of-life claims, and design constraints…

4 days ago
  • Aerospace

Electrifying Aviation: Polymer Electrolytes for Al-Air Batteries

Polymer electrolytes boost aluminum-air batteries with safer, leakproof, high-energy performance, unlocking aviation and aerospace electrification.

5 days ago
  • Building & Construction

At ANTEC 2026: Why Additive Dispersion Governs Flame Retardancy in GF PP

In high-loading Glass fiber–reinforced polypropylene composites, dispersion, not chemistry, determines flame-retardant performance.

6 days ago
  • PFAS

Managing Extruder Maintenance in the PFAS-Free Transition

Without PFAS, extrusion systems lose their tolerance for small mechanical flaws. What once ran unnoticed…

1 week ago