2D flow models have been handy for gaining knowledge about the material anisotropy of the deposited composite parts. Still, assumptions cause the loss of significant characters in the deposition flow.
Zhaogui Wang, Chenjun Luo, Zhongqi Xie, and Zhenyu Fang employ a 3D flow model that focuses on the quasi-steady state of the polymer composite melt flow within the nozzle and the subsequent 90-degree turning deposition onto the material substrate.
The extrudate swell of the free surface, furthermore, is predicted using the improved elastic re-meshing method provided in ANSYS-Polyflow. It is an efficient and computationally powerful re-meshing algorithm for free surface predictions of 3D extrusion flows.
The 3D flow model presents advantages over the 2D-planar flow model:
Additionally, a parametric study was performed with the constructed 3D flow and fiber analysis formulation to understand the impact on process parameters.
Among these, the ratio of extrusion-to-deposition ratio exhibits the most significant impact. As an increased deposition rate increases, the fiber alignment along the direction of the deposition.
Therefore, the simulation-based methodology provides an effective means for both designers and manufacturers to simulate the mechanical properties of the entire product manufactured with LAAM without the burden of time-consuming experiments.
Read the full article from our SPE Journal Polymer Composites.
Fraunhofer validates solvent and glycolysis routes that convert contaminated packaging waste into textile-grade PP and…
A decision made at the pigment stage can decide whether a plastic product is recyclable…
Packaging laws are accelerating. Learn how policy reshapes PLA choices, end-of-life claims, and design constraints…
Polymer electrolytes boost aluminum-air batteries with safer, leakproof, high-energy performance, unlocking aviation and aerospace electrification.
In high-loading Glass fiber–reinforced polypropylene composites, dispersion, not chemistry, determines flame-retardant performance.
Without PFAS, extrusion systems lose their tolerance for small mechanical flaws. What once ran unnoticed…